Montana Tech 		Montana Tech Method Software Development Standard	Version 2.5			MTM	Dec 10, 2010
Software Engineering		Standard for C++ Source Files	page: of 26
		
[bookmark: _GoBack]
MTM Standard for C++ Source Files

Version 2.5
December 10, 2010
Frank Ackerman
Software Engineering
Montana Tech of the University of Montana

	Version
	Date
	Author
	Comment

	1.0
	1/18/07
	Frank Ackerman
	Initial Mtech version

	1.1
	1/21/07
	Frank Ackerman
	Hwe's proof corrections

	1.2
	1/28/07
	Frank Ackerman
	Added global constants to class header file
Added function definitions to main file

	1.3
	2/10/07
	Frank Ackerman
	Use S prefix for structs instead of ST suffix to match Windows convention on classes.
In member functions definitions, fully qualify references to base member functions.

	1.4
	2/20/07
	Frank Ackerman
	Use prefix E for an enumeration type

	1.5
	4/30/07
	Frank Ackerman
	Ptr suffix for pointer names

	1.6
	8/15/07
	Frank Ackerman
	SV suffix for structure members.

	1.7
	10/07/07
	Frank Ackerman
	Clarify headers in class .h files

	1.8
	
	Frank Ackerman
	not noted

	1.9
	7/27/08
	Frank Ackerman
	Clarify variable initialization at declaration

	2.0
	8/5/08
	Frank Ackerman
	Coordinate with Sun's Java code conventions

	2.1
	12/2/08
	Frank Ackerman
	Minor corrections

	2.2
	7/17/10
	Frank Ackerman
	Change left braces placement

	2.3
	8/2/10
	Frank Ackerman
	Update examples

	2.4
	9/27/10
	Frank Ackerman
	Correct for brace

	2.5
	12/10/10
	Frank Ackerman
	Update for class final exercise

Montana Tech Software Engineering Students:
These Montana Tech Method software engineering standards encapsulate Dr. Ackerman’s decades of experience in the software industry, the IEEE software engineering standards, and many suggestions from various texts. They have gone through many revisions and additions over the last several years. They are part of your software engineering studies so that (1) you may have the experience of developing software to a standard (which you may find you need to do if you take a job that requires high reliability software), and so that (2) you will have the experience of developing high quality software. You are also invited to participate in the continuing evolution of these standards by studying them critically and making suggestions for their improvement and correction.

Purpose
The purpose of this document is to define a Montana Tech CS Department standard for C++ source files that can be used in courses in Software Engineering that teach C++ programming or use C++ programs.
Introduction
Industry source files tend to have very long lives and to change regularly. Since these files constitute the first level of documentation of the code it is imperative that as well as being syntactically and semantically correct code, they be readily understandable by a defined community of knowledgeable professionals.
This document specifies the requirements that Montana Tech CS Department source files should meet to be readily understood by knowledgeable students and faculty.
Justification
Some of the requirements in this standard are unusual. They have grown of the author's involvement with software inspections, software reliability, and software quality over decades of industry experience. Creating close to zero defect software is extremely difficult. This standard is based on the belief that a programmer should supply as much information as possible to make his or her code readable and understandable by current and future peers. All code is written using a single, simple fixed width font, sans even such simple devices as italics and underlining. This restricts the expressive clarity of embedded textual material. One of the ways this standard addresses this problem is to require that all variable names not be ordinary words in the natural language of the textual material.
The textual material required by this standard is highly structured to provide just the information essential for succinctly and accurately documenting program requirements, design, testing, and correctness arguments. This standard call for only a meager number of comments in the code itself – most of the necessary information is given in module and function header comments that use a labeling scheme to link requirements and design elements to blocks of code. This technique encourages the creation of precise, verifiable designs prior to coding[footnoteRef:1], facilitates correctness arguments and rigorous inspection, and makes the code itself easier to read and maintain. [1: For teaching purposes my criteria for a satisfactory design is that it can be at least abstractly "executed" by a peer other than the author.]

Although this standard stands alone, there is a companion MTM standard for Java. Out students take courses in both C++ and Java. The Sun Microsystems Coding Conventions for Java are considered by some as an industry standard, so wherever possible this standard is compatible with the Sun document. Some of the major elements it adds to the Sun document that are not related to differences between C++ and Java are:
· the file heading comment is simplified
· tabs are set every four spaces
· only a few in-code comments are called for
· function header comments immediately preceed function headers
· function parameters are all suffixed PR
· function header comments may directly cite function parameters
· all function headers have a DESCRIPTION section
· some function headers may also have a REQUIREMENTS and DESIGN section. These are rigidly structured:
· requirements are most often a single sentence and are identified with a unique label (e.g., R01)[footnoteRef:2] [2: Some requirements naturally break down into sub-requirements. These are labeled a, b, c, etc.]

· design elements must be one of the MTM standard design language constructs
· blocks of design elements are identified with a unique label (e.g. D01) which must be associated with hanging indented L labels in the code
· function header comments are set off with dashes
· if and else blocks are set off with braces unless they are a single expression that fits on the same line as the if and else clause. Paired if and else clauses should use the same format.
· else statements start on a separate line
· else if are so written and start on a separate line
· else if statements should only be used for multi-way branching
· variables may be initialized where they are declared, but should be in a labeled block of all initialized variables and cited in a design element.
· each line of code should contain at most one statement except if rare cases where the statements are short and the programmer wants to emphasize their relationship
· all closing braces are tagged to identify the element they close
· class definitions are tagged with an in-line comment repeating the name of the class
· function definitions are tagged with an in-line comment repeating the name of the function followed by ()
· if, else, while, do, for, and switch statements are tagged with an in-line comment that at a minimum identifies the construction it closes (e.g., }//if). This may also be followed by a brief comment relating to the semantics of the construction.
Application
This standard applies to all source files that instructors use as examples and to all source files that students produce as part of a scored assignment.
Files
This standard applies to the following kinds of source files:
1. main program .cpp file
2. class definition header .h files
3. class implementation .cpp files
Main project program .cpp file
The .cpp file that contains the main program shall have the following parts in the following order:
1. Title block – always present
2. C++ includes – almost always present (normally <iostream> is included for every program)
3. Application includes – present only if there are application includes
4. Using statements – present only if using is being used
5. Global constant declarations – present only if there are global constants
6. Type definitions – present only if there are type definitions
7. Global variables declarations – present only if there are global variables
8. Function prototypes – present only if there are function prototypes
9. main() header
10. Definition of main()
11. Definition of other functions
12. Source file end comment
Title Block
The title block consists of three C++ comment lines that begin at the left margin. These are the first four lines of the file.
The first line, tabbed a few stops to the right after //, gives the name of the directory/folder that contains this file. Normally this will be the name of the project of which this file is a part. If Visual Suite (VS) is being used, this folder would be created in VS.
The second line, tabbed a few stops to the right after //, gives the name of the file.
The third line gives the current owner's name immediately following //
//					FactProjAAF
//					factorialFuncAAF.cpp
//Frank Ackerman

C++ Includes
A C++ includes block begins with a blank line. The following is an example.

//-------------
// C++ includes
//-------------
#include <iostream>
#include <string>

When VS is being used we do not normally use the .h form of these include files.

Application Includes
An application includes block begins with a blank line. The following is an example.

//---------------------
// Application includes
//---------------------
#include "appInclude.h"

Using Statements
A block of using statements begins with a blank line. The following is an example.

//-----------------
// Using statements
//-----------------
using namespace std;
Global Constants
A block of global constants begins with a blank line. Global constants are use to give meaningful names to constants that will be used throughout a program. Global constants are written with all caps and underscores. The following is an example.

//-----------------
// Global constants
//-----------------
const long MAX_FACTOR = 13;
For the most part, global (or local, defined below) constants should be used instead of literals.

Type Definitions
A block of type definitions begins with a blank line. Since we usually define a class in a separate .h file these will usually be enum or struct definitions. Structure names are prefixed with S, enumeration names with E. Names of structure members are suffixed with SV. Names of enumeration constants are written the same way as constants.

//-----------------
// Type definitions
//-----------------
struct Sdate
{
	int daySV;
	int monthSV;
	int yearSV;
};//Sdate

enum ElightColor {RED, GREEN, YELLOW};
.
We use only primitive “C” structures without an access specifier. We do not define structure member functions.
Global Variables
A block of global variables begins with a blank lines. Global variables end with the suffix GV. Global variables are never initialized here. The following is an example.

//-----------------
// Global variables
//-----------------
long maxFactGV;

In general, the use of global variables is not encouraged.
Function Prototypes
The function prototypes section begins with a blank lines followed by a section heading:
//---------------------
// Function definitions
//---------------------

Our preferred style is to just list function prototypes before the main program (see next sub-section) and then to supply the function definitions after the main program. This style focuses initial attention on the main, top-level of the program and places the definition of the functions called by main in a subordinate position. Also, this style automatically handles and cross-linked functions.
The rules for function definitions are given below.
Function Prototypes
The function prototypes section begins with one blank lines followed by a section heading:
//--------------------
// Function prototypes
//--------------------

All project defined functions are listed here. These functions are given in alphabetical order by function name. The function type is given on a separate line immediately preceding the function name. A blank line separates each function prototype:
double
areaRect(double wdthPR, double lngthPR);

A parameter name must be supplied for each parameter. These names must follow the guidelines for variable names given in the next section. Each parameter name must be suffixed with PR to clearly identify it as a function parameter.
Separate lines may be used to list the parameters:
void
readSalesData(ifstream& infilePR,
		 string salesPersonIdsPR[],
		 double salesByQuarterPR[][NMBR_QRTRS_IN_YEARS],
	 int nmbrOfSalesPersonsPR);

When this is done, placing more than one parameter on a line indicates a relationship, example for a geometric situation lengthPR and widthPR might be placed on the same line.
main() Header Block
A function header block always contains a DESCRIPTION section. It may also contain REQUIREMENTS and DESIGN sections. The main() header block may also contain LOGICAL TEST CONDITIONS, TEST CASES, and CORRECTNESS ARGUMENTS as well, although these are usually more easily constructed in one of the accompanying development documents.

/** **
DESCRIPTION - main
Brief description of the program for which this is
the main function. When there is a spec sheet, this should be an exact copy of the description in the spec sheet.

REQUIREMENTS
Rnn labled list of input, output, and processing requirements) for this program. See the section below on Other Functions for further information. If requirements are stated in a separate document this document should be referenced here.[footnoteRef:3] Also see the Other Functions section below [3: The use of a separate requirements document violates our stipulation that all textual material be included in the source file. We relax this requirement for student assignments. In a development environment the requirements in the separate document should be copied here before the final version of the code is placed under configuration management.]

DESIGN
The overall design of the main function, which must be the
overall design of the program. See the Mtech Program Design Language Standard for details. If the design is stated in a separate document this document should be referenced here[footnoteRef:4]. See the last section of this document for an example. [4: See the previous footnote.]

LOGICAL TEST CONDITIONS
See MTM Simple Program Specification Sheet Template.

TEST CASES
See MTM Simple Program Specification Sheet Template.

CORRECTNESS ARGUMENT
See MTM Simple Program Specification Sheet Template.
***/

The heading comment may also contain an optional NOTES section. In this section the items are numbered N01, N02, etc

main() Function Definition
The rest of the mai() function block has the outline shown below.
int
main()
{

	Declaration of main program variables and constants. See below for
	details

	Executable program statements. See below for details.

}//main()

A blank line often precedes the closing brace.
Declaring function variables and constants
Function variables and constants should all (except for special cases where this is not appropriate) be declared at the beginning of a function before any executable statements. The following guidelines apply.
1. All declaration statements begin at the second tab stop.
2. Except for unusual situations, each variable declaration is made on a separate line.[footnoteRef:5] Variables of the same type that are closely related, for example, are attributes of the same object, may sometimes be on the same line to show this close relationship. For example, you might have

 float boxHeight, boxWidth; boxLength; 	//box dimensions

on the same line. [5: Putting each variable on a line by itself facilitates (a) following the variable by a brief descriptive comment, (b) initializing that variable, (c) changing the type of that variable, (d) organizing variable declarations into meaningful groups.]

3. When appropriate, variables of the same type should be grouped together and written in alphabetical order.
int customerName,
 numberOfCustomers,
 supplierName;

4. Variables should be initialized just prior to their use. In certain special cases they must also be declared near where they will be used.
5. Variable names
a. should be no shorter than three characters.
b. The index variable in loops is best named explicitly as such, for example ndx, but for short simple loops i, j, k, m, and n may be used. These variables may also be used to match a problem statement
c. should be descriptive of the data they contain, for example, firstPrime
d. should not be ordinary English words like prime or first.[footnoteRef:6] [6: Code documentation that is not embedded in source files has a strong tendency of getting lost over time. (Source code files often migrate over many generations of a program. There are files that were created thirty years ago that are still in use today.) This standard emphasizes in situ documentation that may include a detailed design in the function heading comment that is directly keyed to the code. These detailed design statements often reference program variables. Since source code is restricted to a single font, names of variables that are English words may lead to confusing and ambiguous English statements.]

e. may be abbreviated in part or in whole
Abbreviations should be used consistently. The table below list some of the more common abbreviations that have currently been identified.
	Abbreviation
	Entry

	avg
	average

	coef
	coefficient

	cord
	coordinate

	crrnt
	current

	dsply
	display

	elem
	element

	flg
	flag

	frst
	first

	hrs
	hours

	min
	minutes

	ndx
	index

	nmbr
	number of (amount)

	num
	Identifing number

	nxt
	next

	scnd
	second

f. always begin in lower case
g. pointer variable names should always end in Ptr.
h. should use internal capitals to delineate separate words (i.e., use "camel" casing), for example, lastName rather than last_name
i. should, where appropriate, fully qualify the name with the object it is associated with, for example, empLstNm and cusLstNm for "employee last name" and "customer last name".
j. end in _LC for local const variables
k. end in LS for local static variables
6. Variables that are initialized when they are declared should be listed separately at the end of the initial group of declaration statements and, when L lables are being used, given the label Lnn to match a variable initialization statement in the DESIGN. Variable initialization is an important part of the logic of a program.
7. Variables that have no other function except to index through a for loop may be declared in the for statement.
Executable program statements
The statements that make up the body of a program should adhere to the guidelines given below. In addition there are a number of rules for the use and placement of braces. These are covered in a separate section below.
1. No statement begins before the 2nd tab stop. The statement may be preceded by an L-label comment, however. See the last section for an example.
2. Statement blocks that are part of compound statements should be indented a half tab stop (2 spaces)
3. Statement should not line break when they are printed,[footnoteRef:7] i.e., the programmer must explicitly break long statements. Subsequent lines of broken statements are indented two spaces unless operator alignment is being used, for example [7: The length of a non-breaking line varies with font size and the printer. A good font size is 10. At this size most printer will not break an 80 character line.]

cout << "Some length string" << outStr
 << "Another string" << outInt;

4. As just shown, sometimes when breaking on an operator, start the continued line with that operator. In this case, position the initial operator to best show continuity.
5. Blank lines should be used to group logically related statements together.
6. Most terminating (right) braces should be on a line by themselves at the same indentation level as the statement they terminate. Most terminating braces should be tagged with the type of statement they terminate, for example, }//for. Additional information may be included in the tag where appropriate, for example, }//for each employee.[footnoteRef:8] [8: Code is often moved and reformatted. Tagging terminating braces is very helpful in re-establishing visual clues to code logic. It also aids readability generally.]

7. Unary operators appear immediately adjacent to their operand.
8. Binary operators are almost always surrounded by spaces and the factor or term enclosed in parentheses.[footnoteRef:9] [9: In some special situations where clarity is enhanced binary operators are not surrounded by spaces and parentheses are not used.]

9. Use of the special else if construction should be reserved for a generalized switch, that is, multi-way branching statements.
10. It is permissible to use a while(true) construction. When using this construction the first statement in the loop should be an if-break statement.
11. In logical expressions true and false should be explicitly stated, that is, a non-zero value for true and a zero value for false should not be used.
12. Spaces should be used in parenthesized expression to clarify scope, for example
foo(!((canNmbr == empNmbr) && (canName != empName)))
should be written as
foo(!((canNmbr == empNmbr) && (canName != empName)))
Other Functions
The block of other functions consists of sub-blocks of other function definitions. These sub-blocks should be ordered alphabetically by function name. Each sub-block should begin with two blank lines. The outline of the text for each function is:

/*---
DESCRIPTION
Brief description of what this function does

REQUIREMENTS
Rnn labled list of input, output, and processing requirements (if any) for this function unless the function is very small and these requirements are self-evident.

DESIGN
The overall design of the function, which must be the
overall design of the program. All lines are tabbed over one stop and some lines are preceded by a Dnn number. See the last section of this document for an example. This section may be omitted for very simple functions
---*/
function-type
functionName(function-parameters)
{
Declaration of function variables. See section 5.9.1.

Executable program statements. See section 5.9.2

}//functionName()

A blank line precedes the closing brace. The closing right brace is commented with the function name followed by ().
Large, complex functions should contain a DESIGN subsection following the REQUIREMENTS subsection. This function DESIGN should be linked to the code as it is in main(). The heading comment may also contain an optional NOTES section. In this section the items are numbered N01, N02, etc.
REQUIREMENTS
a) REQUIREMENTS should be given unless the function is simple and everything that a user needs to know is given in the DESCRIPTION. For example, see Cclock::gettime() in section 10.
b) Each requirements statement is a statement that can be verified by observation, inspection, or testing. Usually it is a single sentence, although in some cases it may have a list of subordinate clauses. In that case, clause must be verifiable.
c) Some of the requirements statements must describe the results of executing this function. A function can influence its environment through pointer parameters (or reference parameters), through its return value (if it is not void), through its own static variables (if it has any), and through output to files. Requirements statements should describe any change the function could potentially make to its environment and under what conditions it will make that change. If any functions that this function invokes change the environment these changes must also be referenced.
d) The results of a function can be influenced by its parameters, global variables, its own static variables, and by input from files. These influences should be covered in requirements statements.
e) The requirements should also state any other constraints that should be met by the functions design or implementation.
Source File End Mark
Every source file should end with
//end filename
Class Definition Header Files
Each user defined class should be defined in a separate .h file. The name of this file should be the same as the class name with the initial C. This file provides the class's Abstract Data Type (ADT) definition and should have the following parts in the following order
1. Title block
2. ifndef and define
3. C++ includes
4. Application includes
5. using statements
6. Global constant definitions
7. Class definition
8. endif
9. Source file end mark
Items 1, 3, 4, 5, 6, and 9 are the same as for the main.cpp file.
The ifndef and define begin and end with one blank line and are written as

	#ifndef className_H
	#define className_H
The endif lines begin and end with one blank line and are written as

	#endif	 //className_H
A class definition has the following form:

/***************************
Cclass
Description of what the class is about.
****************************/
class CclassName
{
private:

	private member object declarations in alphabetical order by
	type and alphabetical order within a type

public:

public member object declarations in alphabetical order by
	type and alphabetical order within a type

default constructor prototype

other constructor prototypes

public member function prototypes in alphabetical order by function name. The function heading comment is indented two tab stops

private:

private member function prototypes in alphabetical order by
function name. The function heading comment is indented two tab stops.

};//class CclassName
Constructor and function prototypes follow the rules for writing prototypes given above in section 6.8. Each member function prototype begins with a blank line. References to functions in base classes are fully qualified using the class name and scope resolution operator.
Names of functions other than constructors that are original for this class are suffixed with MM (Member Method). Many programs will define classes by inheritance from library classes. This suffix distinguishes programmer defined methods from those inherited from the library.
Function heading comments always contain a DESCRIPTION section. Where appropriate they should also contain a REQUIREMENTS section. A DESIGN section is given in the .h file only for function definitions. For prototypes the DESIGN section is given in the class implementation file.
Variable declarations follow the rules given above in section 6.9.1 except that all member variables are suffixed with MO. Section 11 contains a sample class definition .h file.
We require that the default constructor not have any parameters.
Class Implementation Files
Every class .h file should have a .cpp file with the same name. This .cpp file provides definitions for the class's member functions and should have the following parts in the following order:
1. Title block
2. C++ includes
3. Application includes
4. Using statements
5. Type definitions
6. Function prototypes
7. Default constructor definition
8. Other constructor definitions
9. Definitions of public member functions in the order listed in the class .h file.
10. Definitions of private member functions in the order listed in the class .h file.
11. Source file end mark
The first six items and the last item are the same as for the main.cpp file.
Function definitions are the same as functions in main.cpp except:
· the scope resolution phrase goes on the same line as the function type (or on the line immediately preceding the function header for constructors).
The block of application includes will have at least the include for the class definition .h file.
Comments
By including a keyed, detailed design in the source file we eliminate the need for very many comments in the code. Comments in the code itself should be used sparingly as they can get in the way of clearly reading and understanding the code, especially if they just restate code constructions. Some of the places where it is appropriate to use comments are:
1. // comments describing the purpose or function of a local variable (which is one reason each variable is on a line by itself). These comments should all begin at the same tab stop off to the right
2. comments that add application specific information to the }//if, }//else, and }//while constructions.
3. brief comments placed on top of if or else statements to remind the reader of important aspect of the unfolding calculation
Rules For Braces
Braces, like parentheses in expressions, should be used liberally. The following rules apply:
1. Function braces
The opening (left) brace for a function definition is on a line by itself at the leftmost margin, as is the closing brace. The closing brace should be immediately followed by a comment tag giving the name of the function.
2. if blocks
a. always use braces, even for one line ifs unless the statement controlled by the if fits on the same line.
b. always use the format:
			if (expression)
{
				first statement controlled by if
				any additional statements controlled by if
			}//if optional descriptive comment

3. else blocks
a. always use braces, even for one line else
b. always use the format:
		else
{
			first statement controlled by else
			any additional statements controlled by else
		}//else optional descriptive comment

4. while blocks
a. always use braces, even for one line whiles
b. always use the format:
		while (expression)
{
			first statement controlled by while
			any additional statements controlled by while
		}//while optional descriptive comment

5. do while blocks
a. always use braces, even for one line whiles
b. always use the format:
			do
{
				first statement controlled by do
				any additional statements controlled by do
			} while (expression);

6. for blocks
a. always use braces, even for one line fors
b. always use the format:
for (initializing-list; expression; altering-list)
{
			first statement controlled by for
			any additional statements controlled by for
		 }//for optional descriptive comment

7. switch blocks
a. the case expressions also starts at the same indent level as switch
b. the body of each case is indented one stop
c. there is a blank line before each case except the first and a blank line before the closing brace
d. a default should be included as the last case
			switch (integral-expression)
{
			
			case value-1:
				statement1;
				statement2;

			case value-2:
				statement3;
				statement4;
	
			default:
				statement5;
	
			}//switch optional descriptive comment

Note that switch causes execution to start at a selected case statement (or the default statement) but unless the last statement in a case is a break statement execution continues with the next case.

Examples
//						projectFolder
//						factorialFunc.cpp
//Frank Ackerman
//

//------------
// C++ includes
//-------------
#include <iostream>
#include <cmath>

//-----------------
// Using statements
//-----------------
using namespace std;

//------------------
// Global constansts
//------------------
const long MAX_FACTOR = 13;

//--------------------
// Function prototypes
//--------------------
long int
factorial(long nPR);

/**
DESCRIPTION - main
Program provides user interface for computing n! for
small values of n.

DESIGN
D01	Display program salutation;
D02	Display "Compute n!" message;
D03	Do {
D04		Obtain valid nIn from user;
D05		Set nFact to factorial(nIn);
D06		Display nFact;
	} While (nIn != 1)
D07	Display program closing;
	Exit from program;
***/
void
main()
{
		long nFact;
		long nIn;

/*L01*/	cout << "\nEnter Factorial"
		 << "\n---------------"
		 << "\n";

/*L02*/	cout << "\nCompute n! To exit enter 1";

/*L03*/	do
		{
			cout << "\n\nValue of n in [1," << maxFactGC << "]:";

/*L04*/		while (true) {
				cout << "\n n> ";
				cin >> nIn;
				if (1 <= nIn && nIn <= maxFactGC) {
					break;
				}//if
				cout << " Not in valid range";
			}//while getting valid nIn

/*L05*/		nFact = factorial(nIn);

/*L06*/		cout << nIn << "! = " << nFact;

		} while (nIn != 1);

/*L07*/	cout << "\n\nExit Factorial"
		 << "\n--------------"
		 << "\n\n";
		return;

}//main()

/*---
DESCRIPTION factorial
Returns factorial of nPR.

REQUIREMENTS
R01	On entry nPR is guaranteed to be in [1,13];
R02	On exit return value is 1 * 2 * ... * nPR;
--*/

long int
factorial (long nPR)
{
	long ndx;
	long nFact;

	nFact = 1;
	for (ndx = 2; ndx <= nPR; ndx++) {
		nFact *= ndx;
	}//for
	return nFact;

}//factorial()

//end factorialFunc.cpp

//						Cclock24.h
//Frank Ackerman from D. S. Malik
//

//----------------------
//Force one include copy
//----------------------
#ifndef Cclock24_H
#define Cclock24_H

//---------------
// C++ includes
//---------------
#include <cmath>
#include <iostream>
#include <iomanip>
#include <string>

//-------------------
// Using statments
//---------------------
using namespace std;

/************************************
Cclock
Provides a 24-hr clock: hh:mm:ss
*************************************/
class Cclock24
{
private:

	//--------------
	//Member Objects
	//--------------
int hrMO; //0-23
int minMO; //0-59
int secMO; //0-59

public:

	/*******************/
	DESCRIPTION – Cclock24
	Default constructor.
	********************/
	Cclock24();

	/**************************************
	DESCRIPTION – Cclock24
	Constructor with some default parameters
	**/
	Cclock24(int hoursPR, int minutesPR = 0, int secondsPR = 0);
	

	//--------------
	//Member Methods
	//--------------

	/*---
	DESCRIPTION - dsplyTimeMM
	Displays hh:mm:ss
	---*/
	void
	dsplyTimeMM() const;

	/*-------------------------------------
	DESCRIPTION - equalCockMM
	Function to compare two clocks

	REQUIREMENTS
	R01	Returns true only if the member variables
		of otherClockPR are equal to the member
		variables of this Cclock.
	R02	Otherwise returns false.
	---*/
	bool
	equalClock24MM(const Cclock& otherClockPR) const;

	/*---
	DESCRIPTION - getTimeMM
	Function to get the Cclock24 member variable values
	---*/
	void
	getTimeMM(int& hoursPR, int& minutesPR, int& secondsPR);

	/*---
	DESCRIPTION - incSecMM
	Advances Cclock24 by incSecPR.

	REQUIREMENTS
	R01 To have an effect, incSecPR must be non-negative
	---*/
	void
	incSecMM(int incSecPR);

};//class Cclock24

#endif //Cclock24_H

//end Cclock24.h

mtmC++SrcFileStd.doc	
