Montana Tech 		Montana Tech Method Software Engineering Standard 	Version 5.6
		MTM Algorithm Language	Dec 2, 2015
Software Engineering		Framwork for Functions/Methods	page: of 9
		
Montana Tech Software Development Standard
[bookmark: _GoBack]MTM Algorithm Language Framework for Functions/Methods

Version 5.6
Dec 2, 2015
A. Frank Ackerman
Software Engineering
Montana Tech

	Version
	Date
	Author
	Comment

	4.6
	01/26/11
	Frank Ackerman
	Added Hold

	4.7
	02/05/11
	Frank Ackerman
	Added Exchange

	4.8
	03/27/11
	Frank Ackerman
	Minor edits. Student input page. Remove example

	4.9
	04/03/11
	Frank Ackerman
	Add Elide and Negate

	4.10
	05/01/11
	Frank Ackerman
	Expand Reset to functions w/ static

	4.11
	08/31/11
	Frank Ackerman
	Add Throw

	4.12
	09/09/11
	Frank Ackerman (from A. Hoff)
	Add Parse

	4.13
	10/01/11
	Frank Ackerman
	Organize by major construct

	4.14
	12/14/11
	Frank Ackerman
	Add Run

	4.15
	01/22/12
	Frank Ackerman
	Add Truncate

	4.16
	09/24/12
	Frank Ackerman
	Add Call

	4.17
	10/05/12
	Frank Ackerman
	Add Start

	4.18
	11/1/12
	Frank Ackerman
	Edits to Display and Obtain

	4.19
	11/5/12
	Frank Ackerman
	Add ReadIn for stdin

	4.20
	11/28/12
	Frank Ackerman
	Add Setup and use of functions

	4.21
	12/16/12
	Frank Ackerman
	Add WriteLine and functions

	4.22
	12/23/12
	Frank Ackerman
	Restrict Obtain to using a prompt

	4.23
	02/02/13
	Frank Ackerman
	Added missing semicolons

	5.0
	05/04/13
	Frank Ackerman
	Section overview to Introduction, Add Terminate C string

	5.1
	10/12/13
	Frank Ackerman
	Exec for C

	5.2
	03/28/14
	Frank Ackerman
	Section 4 wording and Catch

	5.3
	10/13/14
	Frank Ackerman
	Added example

	5.4
	01/25/15
	Frank Ackerman
	Minor changes

	5.5
	08/19/15
	Frank Ackerman
	Change title

Montana Tech Software Engineering Students:
These Montana Tech Method software engineering standards encapsulate Dr. Ackerman’s decades of experience in the software industry, the IEEE software engineering standards, and many suggestions from various texts. They have gone through many revisions and additions over the last several years. They are part of your software engineering studies so that (1) you may have the experience of developing software to a standard (which you may find you need to do if you take a job that requires high reliability software), and so that (2) you will have the experience of developing high quality software. You are also invited to participate in the continuing evolution of these standards by studying them critically and making suggestions for their improvement and correction.

Purpose
The purpose of this document is to define the MTM Algorithm Language for Functions/Methods. This language is used throughout the Montana Tech Software Engineering courses to describe the detail design of functions or methods for procedural languages.
Introduction
The MTM Algorithm Language for Functions/Methods provides SE students with an easy-to-use and easy-to-understand method for unambiguously describing the design of functions and methods.
It should be possible for a knowledgeable person to "execute" a program design. That is, while specific details may not be spelled out, all the important logical program constructs should be readily apparent. For example, if the program will use a loop the design should use one of the loop constructs given below. The loop initial and continuing conditions should be clearly stated.
It should be possible to clearly align the design statements with the code and a sample run. In general, blocks of the design will correspond one-to-one with blocks of code.
The design elements defined in this standard are divided into the following categories:
5. Sequential Constructs
6. Selection Constructs
7. Repetition Constructs
8. Other Constructs
Application
This standard applies to program designs for procedural and object-oriented modules and functions written for programming exercises and projects throughout the Montana Tech software engineering curriculum.
Standard
An MTM function/method design is a sequence of design elements. Each element consists of a sequence of design language constructs. Except for the initial, data definition element, each construct in the element begins with one of the keywords (initial letter capitalized and bolded) from the list below and ends with a semicolon or a right brace on a separate next line with a type comment (as shown in the table below). Each element begins with a design element label of the form A.. that is attached to the first construct in the element.
An initial, data definition element (A00) may explicitly declare user data types and also the definition of key variables. Type and declarations are written as code in the target language.[footnoteRef:1] [1: When the design appears in a function heading comment D00 should not be used. Instead types and variables referenced in the design should appear at the beginning of the function stub (or complete code).]

The initial data definition element may be preceded by an optional Algorithm Notes section to assist the reader in understanding the design.
As much as possible, design elements should be label in the sequence A00, A01, A02, As the design develops and new elements need to be inserted, these labels may be extended by adding a suffix of a, b, c, ...
The design list of design constructs given in the next section is the heart of this standard. To facilitate clear design intent, to make a design abstractly executable, and to permit the construction of correctness arguments, only the listed constructs may be used. The listed constructs have been (and continue to be) developed) using the following considerations:
· the list includes all of the control structures used in any of the procedural coding done at Montana Tech
· the list includes all of the data operations used in any of the procedural coding done at Montana Tech
· the semantics of each data operation be clearly understood by Montana Tech software engineering students and faculty and there should be minimal semantic overlap between the listed data operations
· within the above constraints, the list of design constructs should be as short as possible.
The phrases between the keywords and the optional comment are not explicitly defined but should clearly describe the intention or meaning that the code will implement, as should the optional comment following terminating (and labeled) right braces. Braces that will appear in the program should usually appear in the design. Program objects and object attributes, where these are used in the program, should be explicitly referenced by name. Since design text may be part of code, which almost always uses a single fixed width font, ordinary English words should not be used to name objects. Use compound names that clearly reference the object or attribute. For example, use WordCnt instead of count to reference a word count. See the MTM coding standards for more information on naming program objects and attributes.
Sequential Constructs

	Accumulate text;
	to describe a += accumulation operation

	Add text;
	to add a numeric quantity

	Advance walkListPtr;
	use at the bottom a Walk construction

	Allocate text;
	explicitly allocate dynamically managed memory

	Append text;
	to add string/item to the end of a string or a list

	Assert(condition);
	assert condition

	Calculate text;
Compute text;
	to describe a calculation that is more complex than incrementing or decrementing a object or attribute.

	Call function [with parameters]
	to invoke a function

	Catch exception(s)
	starting a catch block

	Close text;
	to close a file

	Construct something;
	to describe creating a new object

	Convert from one form to another;
	usually to describe changing a type or converting a value, e.g., miles to kilometers

	Decrement varName by amount;
	to describe that a value is being decremented (the amount is 1 if not stated)

This construction should always explicitly reference an object or attribute

	Define text;
	to introduce identifiers outside of D00

	Delete text;
	to remove something from a string or a list

	Demonstrate text
	usually only for a demonstration program

	Dialog to display tex;t
	to use a dialog box to display an output

	Dialog to obtain text;
	to use a dialog box to obtain user input

	Display text;
	to display something on stdout

	Exec text;
	In Unix – replace a running process

	Elide text;
	applies to elide part of a string, usually a prefix or suffix

	Exchange text;
	exchange the values of two objects

	Generate something;
	usually to describe generating code in a scripting language

	Hold text;
	used to keep console screen up when running programs in Visual Studio

	Increment varName by amount;
	to describe that a value is being incremented (the amount is 1 if not stated.

This construction should always explicitly reference an object or attribute

	Initialize text
	Set value of object for first time.

	Instantiate object;
	to introduce an object of a defined class

	Link text;
	to explicitly manipulate pointers to place an item into a linked structure

	Negate;
	applies to a numeric object:
 objVar = -objVar

	Obtain text;

	To give a prompt on stdout and obtain data from the user on stdin

	Open text;
	to open a file

	Peek text;
	obtain next character of an instream without taking it out of the stream.

	Parse text;
	break a string or body of text into parts

	Prepend text;
	to add string/item to the beginning of a string or a list

	Process text [;|:]
	perform a defined or easily understood steps; usually terminated with a colon and followed by subordinate steps

	Putback text;
	put a character in at the head of an instream

	Read text;
	to describe the operation of reading data from an opened file

	Readin text;
	to describe the operation of just reading data from stdin without first prompting

	Release text;
	explicitly release dynamically allocated memory

	Reset varName to text;
or
Reset funcName for text;

	to change the value of an object or attribute back to something it was before
or
call a function to reset static variables

	Return [object value];
or
Return to invoker
	to return from a function;
or
to exit a program, return 0 for a normal exit and 1 for an error exit.

	Rotate text;
	to describe the operation of moving an item from one end of a linear arrangement to another, e.g. moving the left-most character of a string to become the right-most.

	Run text;
	Run is a C# Application method. It is used to give control to a class derived from Form.

	Seed the random number generator;
	for the code:
 srand(time(0));

	Set varName to text;
	to change the value of an object or attribute

	Setup text;
	when setting the size or initial contents of a container

	Show text
	when using a "show" method in Java

	Terminate text
	when adding ‘\0’ to create a C string.

	Truncate text
	to shorted a string by eliding characters from its left or right end

	Try text;
	Starting a try block

	Unlink text;
	to explicitly link manipulate pointers to take an item out of a linked structure

	Update text;
	to describe making a modification to the values of an object – generally to reflect a certain condition

	WriteLine text;
	to correspond with a common C# Console method

Selection Constructs
	Call funcName();
	to show an explicit function call

	Case casevalue:
	to mark a entry in a switch statement

	Catch text;
	to start a catch block

	Default:
	the default case for a switch

	If (condition) {
 body of if
}//If optional comment

	for code that is to be executed only if condition is true.

	
	

	If (condition) {
 body of if
}//If optional comment
Else if (condition) {
 body of elseif
}//Else if optional comment
…
Else {
 body of else

}//Else optional comment
	to describe a complex multi-way branch

	Switch (condition) {
 Case value-1:
 statement;
 …

 Default:
 statement
 …

}//Switch
	to describe a simple multi-way branch

	Throw text;
	Throw an exception.

	Try text;
	Starting a try block

Repetition Constructs
	Backup walkListPtr;
	use at the bottom a Walk construction

	Break;
	for code break

	Continue;
	for code continue

	Do {
 body of dowhile loop
} Until (condition);

	to describe a loop that will be executed once before condition is checked

	For (condition) {
 body of for
}//For optional comment

	to describe loops that iterate across a sequence of items

	Walk list with walkListPtr {
 body of loop
}//Walk

	to describe a while loop to walk a linked list.

	While (condition) {
 body of loop
}//While optional comment

	to describe a loop that will not be executed even once if condition is not meet

For an loop in which the exit condition is given by a break in the body of the loop, condition, is forever.

Other Constructs
	Start thread;
	Start a thread executing

Use of Functions
All of the constructs described above apply to a single function. It is important for the student to understand that function calls (for example, the Call construct above) should be used for all substantial and logically coherent operations.

Example
Problem statement: Any positive integer in [1, 2B] can be the start of a 3n+1 sequence. The sequence is constructed by halving the previous value if it is even or multiplying it by 3 and adding 1. Such a sequence is guaranteed to eventually generate the value 1. (If the starting number is 1, the sequence length is 1; if the starting number is 2, the sequence length is 2, as the sequence will be: 1, 1). A algorithm (using the constructs defined above) for obtaining a positive integer from a user (this is assumed) and computing the length of its 3n+1 sequence is given below. An example of execution of a program constructed to this design is:

Positive integer to start> 5
Length of the 3n+1 sequence starting at 5 is 6

The sequence in this example is 5, 16, 8, 4, 2, 1.

An algorithm that gives this result is:

A01	Obtain positive integer startInt from user:
		 “Positive integer to start> “
		Set seqLngth to 1;
		Set preSeqVlu to startInt;

A02	While (True) {

A03		If (prevSeqVlu equals 1) {
A04			Display:
					 The length of the 3n+1 sequence starting at <startInt> is <seqLngth>
				Break;
			}//If at end of sequence

A05		If (prevSeqVlu is even) {
				Set nxtSeqVlu to (prevSeqVul / 2);
			}//If

A06		Else {
				Set nxtSeqVlu to (3*prevSeqVlu) + 1;
			}//Else

A07		Increment seqLngth;
			Set prevSeqVlu to nxtSeqVlu;

		}//While computing sequence values

mtmAlgorLngStdV5.5.docx	12/2/2015
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.
