Montana Tech 		 CSCI112: C Programming 	Version 1.2
				Mar 29, 2015
Computer Science		C Progamming Algorithmic Language Framework V1.2		page: of 5
		
[bookmark: _GoBack]Montana Tech C Programming Algorithmic Language Framework V1.2

Version 1.2
March 29, 2015
A. Frank Ackerman
Computer Science
Montana Tech

	Version
	Date
	Author
	Comment

	1.0
	01/25/15
	Frank Ackerman
	Initial version

	1.1
	02/15/15
	Frank Ackerman
	Added Call

	1.2
	03/29/15
	Frank Ackerman
	Added Link

	
	
	
	

	
	
	
	

Montana Tech C Programming Language I students:
This standard encapsulates Dr. Ackerman’s decades of experience in the software industry, the IEEE software engineering standards, and many suggestions from various texts. You are a invited to participate in the continuing evolution of this by studying it critically and making suggestions for its improvement and correction.

Purpose
The purpose of this document is to define a base language for the expression of algorithms that are to be translated into C programs or functions. This base language is intended to be sufficient for expressing algorithms that can be translated into C language computer programs or functions, but yet be free of the many details involved in using C directly to develop an algorithm.
Introduction
This document is intended to provide C Programming Language students with an easy-to-use and easy-to-understand method for unambiguously describing algorithms that can be translated into C programs, and that can be unambiguously mentally “executed” by fellow students
The constructs defined in this standard are divided into the following categories:
3. Sequential Constructs
4. Selection Constructs
5. Repetition Constructs
Overview
A C language algorithm that can be easily translated into a C program consists of a sequence of algorithm language constructs. Each construct begins with one of the “starter words” (initial letter capitalized) from the list below. Each element may begin with a label of the form Add that is attached to the construct. When this is done all algorithm statements should be tabbed over so that the Add labels are all aligned at the left margin.
As much as possible, language elements should be label in the sequence A00, A01, A02, As the algorithm develops and new elements need to be inserted, these labels may be extended by adding a suffix of a, b, c, ...
The list of algorithm constructs given in the next section is the heart of this document. To facilitate clear intent, and to make an algorithm abstractly executable, only the listed constructs may be used.[footnoteRef:1] [1: When we run into situations for which we have not yet defined a good algorithm “starter word” we will extend this standard to cover this situation.]

The phrases after the keywords are not explicitly defined but should clearly describe the intention or meaning of the construct for that algorithm, as should any optional comment following a terminating semicolon or closing brace. Since algorithm text may be included in a source file, which almost always uses a single fixed width font, ordinary English words should not be used to name objects. Use compound names that clearly reference the object or attribute. For example, use itemCount instead of count to reference an item count.

Sequential Constructs
	Accumulate text;
	to describe a += accumulation operation

	Add text;
	to add a numeric quantity

	Calculate text;
 Compute text;
	to describe a calculation that is more complex than incrementing or decrementing a object or attribute.

	Call functionName
	Invoke a function

	Convert from one form to another;
	usually to describe changing a type or converting a value, e.g., miles to kilometers

	Decrement varName by amount;
	to describe that a value is being decremented (the amount is 1 if not stated)

This construction should always explicitly reference an object or attribute

	Display text;
	Usually implemented at
printf(format-string, scalarDataItem, ...)

	Increment varName by amount;
	to describe that a value is being incremented (the amount is 1 if not stated.

This construction should always explicitly reference an object or attribute

	Link text;
	in a linked list, adjust pointers appropropriately.

	Obtain text;

	Prompting a user for input

We will always terminate a prompt with ‘> ‘

	Read text;
	Read text data from user or file

	Reset varName to text;

or
Reset funcName for text;
	to change the value of an object or attribute back to something it was before
or
call a function to reset static variables

	Return [object value];
or
Return to invoker
	to return from a function;
or
to exit a program, return 0 for a normal exit and 1 for an error exit.

	Set varName to text;
	to change the value of an object or attribute

Selection Constructs

	If (condition) {
 body of if
}//If optional comment

	for code that is to be executed only if condition is true

	If (condition) {
 body of if
}//If
Else {
 body of else
}//Else optional comment

	Two-way branch

	If (condition){
 body of if
}//if
Else If (condition){
 body of else if
}//Else If
Else {
 body of else
}//Else optional comment

	Multi-way branch

Repetition Constructs

	Break;
	for code break

	For (iteration expression){
 body of for
}//For optional comment

	to describe loops that iterate across a sequence of items

	While (condition) {
 body of loop
}//While optional comment

	to describe a loop that will not be executed even once if condition is not meet

For an loop in which the exit condition is given by a break in the body of the loop, condition, is forever.

Example
Problem statement: For any Fahrenheit temperature value in [-1010, 1010] compute the equivalent Centigrade temperature value.

An algorithm that gives this result is:

A01 Display starting salutation;
A02 Obtain inFahr_deg from user;
A03 Compute outCent_deg from inFahr_deg;
A04 Display outCent_deg;
A05 Display ending salutation;

cAlgorLang1.docx	12/2/2015 14:42
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.
