
Effectiveness of a Computational Thinking (CS0) Course 

on Student Analytical Skills 
Michele Van Dyne 

Montana Tech of the University of Montana 
1300 W. Park St. 
Butte, MT 59701 
1-406-496-4855 

mvandyne@mtech.edu 

Jeffrey Braun 
Montana Tech of the University of Montana 

1300 W. Park St. 
Butte, MT 59701 
1-406-496-4206 

jbraun@mtech.edu 

 

ABSTRACT 

In this paper, we describe the content and evaluation of a 

Computational Thinking (CS0) course developed to improve the 

analytical problem solving of students participating in the course. 

The course is targeted to students who are mathematically under-

prepared to enter our introductory programming sequence; 

however, it has recently been included in the University’s general 

education curriculum so that students majoring in any discipline 

may take the course. Using the Whimbey Analytical Skills 

Inventory (WASI) students in the CS0 class, along with students 

in an analogous level engineering class (FESP), were tested at the 

beginning of the course and again at the end, using different 

versions of the test. The improvement in scores was statistically 

significant when measured by both the student t-test and the 

Cohen d (effect size) for CS0 students but not for the FESP 

students, providing support that the course does, in fact, increase 

student analytical problem solving skills. Courses in 

Computational Thinking have demonstrated success in many 

schools; however, this research demonstrates its effectiveness in 

improving analytical skills in majors as well as non-majors.  

Categories and Subject Descriptors 

K.3.2 [Computers and Education]: Computer and Information 

Science Education 

General Terms 

Measurement, Performance, Experimentation 

Keywords 

Computational thinking, problem solving, analytical skills, critical 

thinking, course effectiveness, CS0 

1. INTRODUCTION 
The introductory computer science sequence (CS1 and CS2) at 

Montana Tech does not require any previous programming 

experience, but it does have a corequisite of at least pre-calculus 

level math (ACT Math score of 24 – 26). We find that students 

weak in math skills typically struggle in our CS1 and CS2 

courses.  To prepare these students for computer science studies, 

we developed a CS0 level Computational Thinking course. This 

course primarily covers problem solving and critical thinking 

skills to assist students in the analytical skills they will need to 

complete CS1. In initial offerings of our CS0 course, students 

were those who majored in either computer science or software 

engineering, but because of its demonstrated success in enhancing 

analytical and problem solving skills, the University has approved 

the course as a general education course.  Now students majoring 

in other areas also take the course. 

 

There is a similar course offered to mathematically underprepared 

students entering traditional engineering programs. This course, 

FESP 095 (FESP stands for Foundations of Engineering and 

Science Program), is designed to teach students the skills they will 

need to complete engineering and science programs. 

 

The computer science education literature shows many different 

approaches to CS0 courses for both majors and non-majors [2, 3, 

7, 10, 13]. Some authors (e.g., Middleton [9]) simply describe 

their introductory course design and the practical issues in 

presenting it in order to share their novel teaching techniques. 

Many researchers try to assess the effectiveness of their CS0 

course by examining CS0 student grades and/or retention in CS1 

and CS2 courses. Dierbach [3] shows that the group of students 

taking Towson University’s General Computer Science (CS0) 

course outperformed all other student subgroups in CS1. Rizvi 

[13] showed Scratch programming based CS0 students performed 

well in CS1.  Huangs [7] assessed Cal Poly’s new CS0 course by 

examining grades in CS1/CS2 and comparing the CS2 retention 

rates of students who did not take CS0 to those that did.  

 

Other CS0 courses [2, 9, 10] similar to Computational Thinking 

focus less on computer programming and more on problem 

solving and critical thinking. Researchers have long recognized 

the importance of incorporating problem solving into introductory 

computer science courses [8]. Middleton [9] and Mitchel [10] 

both describe Problem Solving courses at their institutions and 

monitor their CS0 students in subsequent courses. Middleton’s 

course uses robots “as the environment for the problem solving 

because they make errors obvious, better motivating students to 

finish activities completely”. Middleton also concludes that robots 

are more fun and may improve retention.  The Principles of 

Computation course at Carnegie Mellon “focuses on the principle 

of computation, and how computer scientists study computation 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. Copyrights 

for components of this work owned by others than ACM must be 

honored. Abstracting with credit is permitted. To copy otherwise, or 

republish, to post on servers or to redistribute to lists, requires prior 

specific permission and/or a fee. Request permissions from 

Permissions@acm.org.  

SIGCSE '14, March 05 - 08 2014, Atlanta, GA, USA 

Copyright 2014 ACM 978-1-4503-2605-6/14/03…$15.00. 

http://dx.doi.org/10.1145/2538862.2538956 

 

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2538862.2538956


through the design and analysis of algorithms, correctness and 

efficiency, the limits of computation, and several unique 

applications that build on CS ideas (cryptography, artificial 

intelligence)” [2]. The assessment for this CS0 course relies on 

grades and student feedback as mostly non-majors enroll in it and 

do not move onto CS1. 

 

Other disciplines (e.g., writing, psychology, philosophy) have 

assessed the effectiveness of their courses by using standardized 

tests to measure changes in critical thinking and analytical skills.  

Numerous standardized critical thinking tests exist to assess 

students [5, 11, 12]. Possin [12] reviews the different critical 

thinking assessment methods and many of the popular 

standardized tests, including simple to administer multiple-choice 

tests. He concludes that objective multiple-choice tests appear to 

be “fairly accurate for measuring students” acquisition of specific 

core CT skills”.  

 

To measure the effectiveness of a course for improving critical 

thinking skills, researchers typically give a pre- and post-course 

test. In the critical thinking literature, the popular way to report 

the practical significance of the difference from one test to the 

next within a group is to compute the ratio of the difference in 

mean scores to the standard deviation [4]. This ratio is often 

called the effect size or Cohen’s d. Critical thinking effect sizes for 

a small subset of writing and psychology courses range from 0.24 

of a standard deviation (or 0.24 SD) to 1.47 SD [6, 12, 14]. 

Hatcher [6] compares three different critical thinking tests and 

shows the effect sizes for groups varies from 0.57 SD to 0.97 SD 

depending on which test is administered. Solon [14] infused 

general critical thinking material into an introductory psychology 

course and showed significant change (p=0.000004) and an effect 

size (Cohen’s d) = 0.87 versus the control group which was not 

significant (p=0.49) and effect size (Cohen’s d) = 0.10. 

2. COURSE CONTENT 

2.1 Overview of the Course 
Following the lead of Jeannette Wing of Carnegie Mellon 

University (CMU) [15], we introduced a course called 

Computational Thinking designed to teach problem solving skills 

to underprepared students entering the curriculum. Diverging 

from the CMU approach, but consistent with Middleton’s [9] 

approach, we also incorporated simple robotics in the course 

offering that includes the lab. Students may take the course as a 2 

credit lecture class or a 3 credit lecture and lab class. The course 

is taught as two hours of lecture and three hours of lab per week. 

The catalog description is: 

“Computational thinking involves solving problems, 

designing systems, and to understanding human 

behavior, by drawing on the concepts fundamental to 

computer science. It is the study of an effective 

approach used by people to solve problems. Critical 

thinking involves the systematic evaluation of 

information, and is a crucial piece of problem solving. 

The two are combined in this course to provide the 

student with a powerful set of tools to understand and 

solve the kinds of problems they will encounter in their 

college studies and future careers. The lab incorporates 

a programming component In this programming lab, 

students learn to carefully and systematically analyze 

problems and demonstrate the correctness of their 

solution by implementing it in program code.” 

The Computational Thinking course has been through four full 

offerings, and is in its fifth offering at present. Last year’s offering 

is the first time that the course has been included in Montana 

Tech’s general education curriculum, and its enrollment saw a 

significant increase. 

 

 

2.2 Lecture Content 
The lecture portion of the course stresses logical and 

mathematical thinking and problem solving. The topics covered 

during lecture and reinforced through weekly class assignments 

include analogies, analysis of trends and patterns, logical 

reasoning, mathematical word problems, and critical evaluation of 

information in addition to computer science oriented topics such 

as algorithm development, data type and structure, abstraction, 

decomposition, transformations, simulation, iteration, recursion 

and the introduction of specific algorithms. 

The in-class portion of the course is taught very interactively. 

During each class, students are given about 15 minutes of 

instruction on a topic then the class as a whole participates in 

exercises about that topic. An attempt is made to get all students 

to actively participate. The class is then broken into groups which 

work on additional exercises. Weekly assignments are given 

which also reinforce the concepts taught that week. 

Material for the course has been drawn from a variety of sources, 

though much of the computer science oriented topics have been 

drawn from Backhouse’s Algorithmic Problem Solving [1], and 

from pre-publication material from this source available online.  

 

2.3 Lab Content 
The lab portion of the CS0 course uses the Lego Mindstorms 

NXT robotics kits to illustrate concepts taught during lecture. The 

robotics approach was chosen rather than general programming 

because of the interactive and visual feedback of results to 

students. Students in the lab must build their own robots and 

program them, first using the graphical programming environment 

provided with the kits, and then moving on to programming them 

in Java (using LeJos, a Java library for the NXT robots). Lab 

assignment topics to reinforce the lecture topics include 

programming as reasoning, programming as math, algorithms, 

data and variables, decisions, problem solving, functions, 

iteration, sorting and a final assignment of tying it all together. 

As one example of a lab assignment, students are asked to 

program their robot, which at this point has distance sensing 

capability, as a “feral robot”. The robot is to continually sense 

objects within a certain distance. If something enters this “unsafe” 

distance, the robot is to back away, unless the intruder gets even 

closer, at which point the robot is to attack. The definition of 

attack behavior is left to the student. This assignment incorporates 

looping and decision constructs along with the development of the 

algorithmic logic. The first version of this assignment is done 

using the graphical programming environment, and a later version 

is rewritten using Java code. 

Students are not required to take the lab, but most do. In the past 

four offerings, 74% of the students took both the lecture and lab 

portion of the course. 



3. EVALUATION 
To test the effectiveness of incorporating the Computational 

Thinking course into the pre-curriculum, the Whimbey Analytical 

Skills Inventory (WASI) pre-test and post-test [16] were used in 

each of the four complete offerings of the course. On the first day 

of class, the WASI pre-test was administered. It consists of 38 

problems that test mathematical and logical thinking in various 

forms. During the semester, instruction is given which first 

addresses the types of problems the WASI test covers, and then 

delves into deeper logical concepts such as algorithm 

development, using structured logic, invariants, and recursion. 

Students are not informed they will be taking either the WASI 

pre-test or post-test; in fact, they are told that the final exam will 

cover class material, and in fact, the final exam is completely 

separate from the WASI exams. Furthermore, the WASI tests have 

no bearing on student grades, and students are informed of this 

when they take the test. On the last day of classes, the post-WASI 

was administered. This is a second version of the WASI test, 

consisting of 37 problems of similar composition, but different 

content, as the pre-test.  

It is possible that any improvement in student performance in the 

CS0 class could be attributed to some factor outside of the class, 

such as completion of the first semester of college coursework. To 

test for this external effect, we also administered the pre- and 

post-tests to students in the pre-engineering course, FESP 095. 

Students in the FESP program have a similar background to those 

that take the CS0 course, in that they are mathematically 

underprepared to enter into the introductory engineering classes. 

The FESP 095 course also has similar goals to CS0, that is, to 

prepare students with the problem solving skills they will need to 

complete an engineering or science degree. The catalog 

description of this course is: 

“This course will focus on the skills that are necessary 

to successfully enter and complete an engineering or 

science program at Montana Tech. These skills include 

dimensional analysis, unit conversion, technical writing, 

and technical drawing. Additional components included 

in the curriculum are presentation of technical 

information and applications/problem solving of 

Intermediate Algebra.” 

 

The WASI tests contain questions that are categorized into several 

categories: verbal reasoning, sequential instructions, analogies, 

relationship sentences, analysis of trends and patterns, and 

mathematical word problems. None of these problems requires 

mathematical skills beyond basic algebra, though most problems 

require logical or analytical skills and attention to detail. 

WASI pre-test and post-tests were included for analysis only if a 

student took both of the tests. (Not all students are present for the 

first day of classes, nor do all students attend class, particularly if 

they are unaware that an exam will be administered.) From the 

CS0 course, an additional set of pre-test/post-test scores was 

discarded because one student misunderstood the instructions and 

answered none of the questions on the pre-test, resulting in a 33 

point gain between pre- and post-test scores. Including this data 

point would have skewed the data favorably, but would have been 

a misrepresentative sample. Students who enrolled in both the 

CS0 course and the FESP 095 course and completed the test in 

both were not included in the data analysis. 

It is possible that students who completed both the pre-test and 

post-test in either the CS0 or the FESP 095 course were more 

motivated than those who did not complete both tests; that is, 

these are the students that regularly attended class. By including 

the same group from each course, we are at least able to measure 

the effect on those motivated students across different class 

environments. 

4. RESULTS AND DISCUSSION 
Over the four completed offerings of the CS0 course, 35 total 

students enrolled; 22 of these students completed both the pre- 

and post-tests. In the FESP 095 course, 52 students enrolled; 29 

of these students completed both versions of the test. To provide 

incentive for the FESP 095 students to take the post-test seriously, 

they were given extra credit if their post-test scores improved.  A 

similar incentive was not offered to CS0 students. There were no 

students who were enrolled in both classes that completed both 

tests in both classes.  

A student t-test was used to compare pre-test scores in the FESP 

095 course and those from the CS0 course to test whether we 

were testing similar populations. There was a slight difference, but 

the difference was not significant (p=0.056), giving us evidence 

that we are comparing a similar population of students. 

In the FESP 095 course, initial WASI pre-test raw scores ranged 

from a low of 8 to a high of 31 out of 38 possible, with an average 

score of 20, while post-test scores ranged from a low of 12 to a 

high of 30 out of 37 possible, with an average score of 21. 

Translating this to percentages, the pre-test had a range of 21.1% 

to 81.6% , and the post-test had a range of 32.4% to 81.1%. The 

average point improvement over the course of a semester was .93, 

and the average percentage point improvement was 4%. 

Distribution of the scores for the pre- and post-tests can be seen in 

Figures 1 and 2 below. 

 

 

Figure 1. FESP Pre-Test Score Distribution 

 

 

 

 

 

 

 



 

 

Figure 2. FESP Post-Test Score Distribution 

 

In the CS0 course, initial WASI pre-test raw scores ranged from a 

low of 12 to a high of 34 out of 38 possible, with an average score 

of 23, while post-test scores ranged from a low of 19 to a high of 

37 out of 37 possible, with an average score of 29. Translating 

this to percentages, the pre-test had a range of 31.6% to 89.5%, 

with an average of 60.3%, while the post-test had a range of 

51.4% to 100%, with an average of 78.4%. The average point 

improvement over the course of a semester was 6.09, and the 

average percentage point improvement was 18.1%. Distribution of 

the scores for the pre- and post-tests can be seen in Figures 3 and 

4 below.  

To compare differences between pre- and post-test scores, the 

student’s t-test was used. The percentage correct on both WASI 

test was used in order to adjust for any differences caused by the 

number of questions on each test, and thus a difference in raw 

scores.  

In the FESP 095 course, a test of significance between scores 

using a two-tailed, paired test, since we are not sure of which 

direction a change would occur, reveals no significant difference 

between pre- and post-test scores (p=0.098). If we assume that 

change should occur in one direction (positive) and not the other, 

and using a single-tailed paired test, we get marginal significance 

(p=0.05). 

For the CS0 course, assuming the change between test scores 

should be in the positive direction, and thus using a single-tailed, 

paired test, a significant difference was found (p=0.00000014). If 

we make the assumption that we don’t know the direction of the 

change, and test for significance using a two-tailed paired test, we 

still get a significant difference (p=0.00000028). This provides 

evidence that participation in the course had a significant effect in 

improving analytical skills as tested by the WASI. 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

As discussed previously in this paper, in the critical thinking 

literature, a common way to report the practical significance of the 

difference from one test to the next within a group is to compute 

the ratio of the difference in mean scores to the standard deviation 

[3], called the effect size.  For our data, the effect size was 

calculated to be 1.36 SD for the CS0 course and 0.29 SD for the 

FESP 095 course. Reported effect sizes on research in the 

literature ranged from 0.24 SD to 1.47 SD, with researchers 

expressing satisfaction at effect sizes over 0.5 SD. Our effect size 

of 1.36 SD lends additional support that participation in the 

course increased student abilities in analytical skills as measured 

by the WASI. The FESP 095 control group’s effect size of 0.29 

SD is within the range (0.23 SD to 0.44 SD) reported for several 

Critical Thinking courses summarized by Possin[12].  

 

It was previously mentioned that not all students take both the 

lecture and lab portion of the class; approximately 26% of 

students take the lecture portion only. Among the students in this 

study, then, 6 took the lecture portion only, and 16 took both lab 

and lecture. Although these numbers are getting smaller, we 

looked at the differences between these two groups. There was no 

difference at all in pre-test performance between the two groups 

(p=0.478). There is a significant, p<0.05, though small difference 

between the groups, however, in post-test performance (p=0.037). 

That is, those students who also attended lab performed better 

than those who attended lecture only. Finally, the difference 

between pre- and post-test performance for those students who 

only attended lecture was significant (p=0.0008), and an even 

more significant difference was found in the test score of those 

Figure 3. CS0 Pre-Test Score Distribution 

 

Figure 4. CS0 Post-Test Score Distribution 

 



who attended both lab and lecture (p=0.00004). The effect sizes 

for these two subgroups are 1.19 SD and 2.97 SD respectively.    

 

5. CONCLUSIONS AND FUTURE WORK 
Statistical analysis of our results give promising indications that 

the CS0, Computational Thinking, course does, in fact, positively 

and significantly impact the analytical problem solving skills of 

students that participate. And although the course was initially 

developed to assist underprepared students who are majoring in 

computer science and software engineering, particularly since it 

has been opened as a general education course, we have other 

majors enrolling in the course. In the data used in this study, 10 of 

the CS0 students were those declaring a major from our 

department, while other majors included Health Care Informatics, 

Electrical Engineering, Chemistry, General Engineering and 

Petroleum Engineering. This suggests that the result of teaching 

Computational Thinking improves the analytical ability of 

students in general, and not just those predisposed to being 

computer science majors. As a subjective side note, most 

comments on course evaluations have been very positive. One 

recent student remark was “I have learned new concepts of 

problem solving that I feel will be crucial to me later on in life.” 

We plan on continuing to collect pre- and post-test data on 

students taking the CS0 class, particularly as our enrollment 

grows and even more non-majors take the course. We think this 

course can be an effective recruiting tool in that it introduces all 

students to the types of problem solving required in computer 

science. On the other hand, since the impact on increased 

analytical skills which are not computationally specific has been 

demonstrated, we would like to see more students encouraged to 

take a course of this nature to help them in problem-solving in 

general. 

6. REFERENCES 
[1] Backhouse, R. 2011, Algorithmic Problem Solving, John 

Wiley & Sons, West Sussex, UK, 2011.  

[2] Cortina, T. 2007, An introduction to computer science for 

non-majors using principles of computation, ACM SIGCSE 

Bulletin 39, 1 (March 2007), 218-222.  

[3] Dierbach, C., Taylor, B., Zhou, H. and Zimand, I. 2005, 

Experiences with a CS0 course targeted for CS1 success, 

ACM SIGCSE Bulletin 37, 1 (March 2005), 317-320. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[4] Ennis, R. H. 2008. Nationwide Testing of Critical Thinking 

for Higher Education: Vigilance Required, Teaching 

Philosophy 31, 1 (March 2008), 1-26. 

[5] Follman, J., Lavely, C., and Berger, N. 1997, Inventory of 

instruments of critical thinking, Informal Logic 18, 2, 261-

267. 

[6] Hatcher, D. L., 2011, Which test? Whose scores? Comparing 

standardized critical thinking tests, New Directions for 

Institutional Research 2011, 149, 29-39. 

[7] Haungs, M., Clark, C., Clements, J., and Janzen, D. 2012. 

Improving first-year success and retention through interest-

based CS0 courses, SIGCSE '12 Proceedings of the 43rd 

ACM technical symposium on Computer Science Education 

(Feb. 2012), 589-594. 

[8] Hyde, D. C., Gay, B., and Utter, D. 1979. The integration of 

a Problem Solving Process in the first course, SIGCSE '79: 

Proceedings of the tenth SIGCSE technical symposium on 

Computer science education (Feb. 1979), 54-59. 

[9] Middleton, D. 2012. Trying to teach problem-solving instead 

of just assigning it: Some Practical Issues. Journal of 

Computing Sciences in Colleges 27, 5 (May, 2012), 60-65. 

[10] Mitchell, W. 2001. Another look at CS0, Journal of 

Computing Sciences in Colleges 17, 1 (Oct. 2001), 194-205. 

[11] Morante, E. A., Ulesky, A. 1984. Assessment of Reasoning 

Abilities, Educational Leadership 42, 1 (Sept. 1984), 71-74. 

[12] Possin, K. 2008. A Field Guide to Critical-Thinking 

Assessment, Teaching Philosophy 31, 3 (Sept. 2008), 201-

228. 

[13] Rizvi, M., Humpries, T., Major, D., Lauzun, H., and Jones, 

M. 2011. A new CS0 course for at-risk majors, 24th IEEE-

CS Conference on Software Engineering Education and 

Training (May 2011), 314-323. 

[14] Solon, T. 2007. Generic critical thinking infusion and course 

content learning in introductory psychology, Journal of 

Instructional Psychology 34, 2 (June 2007), 95-109. 

[15] Wing, J. M. 2008. Computational thinking and thinking 

about computing,” Philosophical Transactions of the Royal 

Society, 366 (July 2008) 3717-3725. 

[16] Whimbey, A. and Lochhead, J. 1999. Problem Solving and 

Comprehension, 6th ed., Psychology Press, Taylor and 

Francis Group, New York and London, 1999. 


